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Abstract: - ECG signal processing in an embedded platform is a challenge which has to deal with several 

issues. One of the commonest problems in ECG signal processing is baseline wander removal and noise 

suppression, which determine posterior signal process. In this report, two filtering techniques are presented 

and implemented to work on a Shimmer platform. Baseline wander removal based on cubic splines and 

morphological filtering are evaluated to check whether are suitable for real-time execution. The use of 

cubic splines is made to estimate the baseline wander in an ECG signal and then subtract it from the input 

dataset to remove the baseline wander. Morphological operators are useful for signal processing and noise 

suppression. These techniques have been implemented and tested by a wavelet-based delineation algorithm 

and results are provided for comparison purposes. The project goal is to develop an implementation for 

baseline wander removal and noise suppression to be executed on an embedded platform, meeting its 

specific hardware constraints, and leaving room for posterior signal processing. This would allow 

designing a Wireless Body Sensor Network to support non-ambulatory healthcare.   
 

Keywords: ECG, signal processing, noise suppression, baseline correction, embedded platform, cubic 

spline, morphological filtering. 

 

1.  INTRODUCTION 

The function of the human body is based on signals of 

electrical, chemical or acoustic origin. Such signals provide 

information which may not be immediately perceived but 

which is hidden in the structure of the signal. This hidden 

information has to be decoded in some way before the signals 

can be given useful interpretations. The decoding of body 

signals has been found helpful in explaining and identifying 

several pathological conditions. This decoding process is 

sometimes easy to perform since only involves a limited 

manual effort such as visual inspection of the signal printed 

on a paper or in a computer screen. However, there are 

signals whose complexity is often considerable and, 

therefore, biomedical signal processing has become an 

indispensable tool for extracting clinically significant 

information hidden in the signal. 

The process of biomedical signals is an interdisciplinary 

topic. It is needed some knowledge about the physiology of 

the human body to avoid the risk of designing an analysis 

method which may distort or even remove significant 

medical information. Of course, it is also valuable to have a 

good knowledge of other topics such as linear algebra, 

calculus, statistics and circuit design. Some decades ago, 

when computers first arrived in the area of medicine, 

automation was the main goal, but this has been modified 

over the years, since a physician must be ultimately 

responsible for the diagnostic decisions taken. Nowadays, the 

goal is develop computers systems which offer advanced aid 

to the physician in making decision. 

 

2. WIRELESS BODY SENSOR NETWORKS 

A Wireless Sensor Network -WSN- is a network composed 
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of very small devices called nodes and, usually, a base station 

which stands for communication and nodes control. The 

nodes in a WSN are spread to measure a set of parameters 

and because of this, a wireless communication among nodes 

and between a node and a base station is needed. 

 

There is a wide variety of issues, regarding science, 

government, health that calls for high fidelity and real-time 

observations of physical world. A network of smart wireless 

sensors could help to reveal what was previously unobserved 

in the location in which a phenomenon is taking place. 

Therefore, there is a challenge to design physically-coupled, 

robust, scalable and distributed systems based on embedded 

networked sensors. These nodes can help to monitor physical 

world and, by the use of its ad-hoc network, to coordinate 

and per-form high-level identification. The information 

gathered by those nodes can be processed to perform a real-

time embedded analysis thanks to which several actions 

could be taken after deciding whatever it may be necessary. 

 

3. THE SHIMMER PLATFORM 

Shimmer [23] is a small wireless sensor platform designed to 

support wearable applications. Its size and technology stands 

for low power consumption so that it can be used as a test 

node for WBSN healthcare application. 

 

It is based on the Texas Instrument MSP430F1611 

processor, which works at a maximum frequency of 8MHz 

and has 10KB of RAM and 4KB of Flash memory. It is 

equipped with several peripherals such as digital I/O, analog 

to digital converters, 802.15.5 radio, Class 2 Bluetooth radio, 

a MicroSD slot and it is a proven solution in medical sensing 

applications. There is a ECG board daughter card to capture 

ECG data. 

The MSP430F1611 is a 16-bit ultra low-power 

microcontroller based on RISC architecture. The CPU is 

integrated with 16 registers that provides reduced instruction 

execution time, since the register-to-register operation 

execution time is one cycle of the CPU clock long. The 

instruction set consists of 51 instructions with seven address 

modes. Each instruction can operate on word and byte data. 

24 of these instructions are emulated: they do not have op-

code themselves and are replaced automatically by the 

assembler with an equivalent core instruction. 

 

The microcontroller does not have a floating point unit and 

all the floating point operations required are transformed into 

several integer compatible operations. It does not support 

hardware division but it has a hardware multiplier. All the 

division and multiplication operations by a multiple of 2 are 

converted into a shifting operation. The compiler provides 

translation for division operations into equivalent integer 

ones whereas the hardware multiplier is used to execute 

multiplications which cannot be translated. 

 

4. STATE OF THE ART 

The removal of the baseline wander in an ECG signal has 

been one of the first challenges in biomedical signal 

processing. The two major techniques employed for the 

removal of baseline wander are linear filtering and 

polynomial fitting. 

 

The design of a linear, time-invariant, high pass filter 

involves the consideration of choosing the filter cut-off 

frequency and phase response characteristic. Obviously, the 

cut-off frequency should be chosen so that the clinical 

information in the ECG remains undistorted, so it is essential 

to find the lowest frequency component of the ECG 

spectrum. Since the heart beat is not regular it is needed to 

choose a lower cut-off frequency, approximately Fc = 0.5Hz. 

Linear phase filtering is needed to prevent phase distortion 

from altering characteristic waves in the cardiac cycle. Finite 

impulse response filters can have an exact linear phase 

response, whereas infinite impulse response -IIR- filters 

introduce signal distortion due to nonlinear phase response. 

To avoid this non-linear phase response in an IIR filter, the 

use of forward-backward filtering stands as a remedy since 

the overall result is filtering with a zero-phase transfer 

function. 

 

Unfortunately, filtering based on that cut-off frequency 

cannot sufficiently remove baseline wander that may occur, 

for instance, during a stress test, so the use of a linear time-

invariant filtering would limit the use of an implementation 

to an ambulatory resting context. For this purpose, calculate 
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the heart rate as inversely proportional to the RR interval 

length is a simple but useful way. Then, it could be possible 

to relate a time-varying cut-off frequency fc(n) to the heart 

rate so that a low-pass filter could be integrated with the filter 

structure. Linear filtering based on filters with variable cut-

off frequency was initially suggested for off-line processing 

of ECG signals [24] and then extended for use in on-line 

processing [25]. Other approaches to linear, time-variant 

filtering have also been described based on adaptive, LMS 

techniques [26]. 

 

An alternative to baseline wander removal with linear 

filtering is to fit a polynomial to representative samples of the 

ECG, with one knot being defined for each beat. The 

polynomial estimating the baseline is fitted by requiring it to 

pass through each of the knot smoothly. This technique 

requires that the QRS complexes first be detected and it 

needs the PQ intervals to be accurately detected. This 

baseline wander removal technique is implemented and 

evaluated in this project. 

 

Muscle noise -electromyography noise- is a major 

problem in many ECG applications. Muscle noise is not 

removed by narrowband filtering but represents a much more 

difficult problem since the spectral content of muscle activity 

considerably overlaps that of the PQRST complex. 

Successful noise reduction by ensemble averaging is, 

however restricted to one particular QRS morphology at a 

time and requires several beats to work properly. One 

approach to muscle noise filtering is to use a filter with a 

variable frequency response, such as a Gaussian impulse 

response. The resulting performance on ECG signal of these 

techniques can be found in [27]. An application of this 

variable frequency response filtering to the baseline wander 

removal challenge can be found on [28]. However, time-

varying properties may introduce artificial waves: a filter that 

provides considerable smoothing of the low-frequency ECG 

segments outside the QRS complex is likely to result in 

undesirable effects during the transitional periods. This 

distortion renders the filtered signal unsuitable for diagnostic 

interpretation of the ECG. There is a host of additional 

techniques to muscle noise reduction, but no single method 

has gained wide acceptance for use in clinical routing. As a 

result, the muscle noise problem remains largely unsolved. 

 

5. DESCRIPTION 

The following process of baseline wander removal is based 

on the paper by C. R. Meyer and H. N. Keiser [4]. There 

have been several approaches, as explained above, to the 

baseline wander removal problem. The technique here 

presented uses a polynomial to try to adapt to the baseline 

wander. In each beat, a representative sample is defined and 

called “knot”. These knots in the input signal are chosen from 

the silent isoelectric line which, in most heart rhythms, is 

represented by the PQ interval. 

 
This technique comes from the work of some 

investigators who tried to adapt a straight-line to the 

segments connecting the pre-P-wave period and the post-T-

wave period of each beat as successive baseline estimates. 

While this solution preserves low-frequency heart activity 

and leads to a small computational cost, such a first-order 

estimator can only accurately track baselines of very low 

frequencies [12]. Furthermore, the resulting baseline estimate 

does not adapt properly to the variations and, what is worse, 

its derivatives at the knots are discontinuous. 

Increasing the order of the polynomial and selecting one 

knot per beat through which the baseline estimation must 

pass is the method used to remove higher-frequency baseline 

noise and preserve low-frequency heart information, which is 

useful for other processes to apply after the baseline wander 

removal. By using higher-order polynomials, the likelihood 

of producing an accurate baseline estimate increases, 

although it is obviously linked to an increased computational 

complexity. 

Instead of letting the order increase as the number of knots 

does, third order polynomial fitting to successive triplets of 

knots represents a popular approach [4 and 13] and leads 

to good results in terms of baseline removal. This 

technique requires the QRS complexes to be detected and 

the corresponding PQ intervals to be accurately 

determined. It is chosen one averaged point in each PQ 

segment of the ECG as sample of the baseline. This 

segment is used because of the ease and accuracy in 

locating it. 
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At each PQ segment there is a knot through which the 

baseline noise estimator must pass. By fitting a third-order 

polynomial through these knots in the ECG signal we get the 

estimation for the baseline. These knots could be also defined 

by the end of the P wave. The polynomial is fitted in such a 

way that, one subtracted to the original signal, these knots 

have a value of 0. 

 

 

 

 
 

Figure: - ECG signal with three knots and the cubic spline baseline wander estimation y(t) 

This technique intuitively approaches the benefits of using 

Lagrange’s method to define a polynomial passing through 

all of the PQ-segment knots of the total ECG record without 

the penalties in complexity associated to high-order 

polynomials. If we used Lagrange’s method over a 20 sec 

record of ECG at 60bpm, the result would be nearly a 20th-

order polynomial to be evaluated at each sample point in the 

record. 

 

The use of this technique in an embedded platform has to 

consider the fact that we need to define accurately the PQ 

interval in each beat. Fortunately, the paper suggests a PQ-

segment locator, although we have had to redefine its 

working process. Furthermore, computing the polynomial in 

the interval of the input signal which is between three 

following beats leads to a memory consumption which has to 

be taken into consideration, as shown below. Finally, the 

function used to fit the polynomial requires some operations 

that are not easy to perform in an embedded platform as the 

MSP430. 

 

The first step is to locate the knots of the successive 

beats in the input signal. These knots are denoted for the 

signal x(t) as 

 

x(ti), i = 0, 1, 2, . . . , 

 

The baseline estimate y(t) is computed for the interval [ti, 

ti+1] by incorporating the three knots x(ti), x(ti+1), x(ti+2) into 

the Taylor series expanded around ti. 

∞ (t − ti)
l
  

X  

y∞
(l)

(ti) 

 

y∞(t) = 

  

  

l=0 
l!  
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For a third-order polynomial description, this series is 

truncated to 

y(t) = y(ti) + (t − ti)y
′
(ti) + 

(t − ti)
2
 

y
′′
(ti) + 

(t − ti)
3
 

y
′′′
(ti) 

 

 2  6 
 

    

And the series expansion for the first derivative y
′
(t) is 

y′(t) = y′(ti) + (t − ti)y′′(ti) + (t − ti)2 y′′′(ti) 2 

 

At t = 0 we assume, to get this technique working, that 

 

y(0) = x(0) 

 

We must approximate the first derivative y′(ti) at ti  by the 

slope between 

 

x(ti+1) and x(ti) 

 

y′(ti) = x(ti+1) − x(ti) ti+1 − ti 

 

As shown in [14], classical splines of order three and higher, 

in which only the highest derivative is discontinuous, suffer 

stability problems during computation so we define both y(t) 

and y′(t) at each knot to arrive at a stable solution. 

 

At the next beat, and to keep the cubic spline adapted to pass 

through all the knots considered, we must approximate, once 

more, 

 

y′(ti+1) = x(ti+2) − x(ti) ti+2 − ti 

 

To find the remaining two variables y′′(ti) and y′′′(ti) in y(t) 

the Taylor series for y(t) and y′(t) is studied for t = ti+1 

 

′   ′′  (ti+1 − ti)
2
  

+ y 

′′′ 

(ti) 

(ti+1 − ti)
3
  

y(ti+1) = y(ti) + y (ti)(ti+1 − ti) + y 

 

(ti) 

 

  

    

      

    2     6  

and       
(ti+1 − ti)

2
 

 

y
′
(ti+1) = y

′
(ti) + y

′′
(ti)(ti+1 − ti) + y

′′′
(ti) 

 

  

2 

   

 

      
 

To get the cubic spline to pass through this knot 
 

y(ti+1) = x(ti+1) 

 

Inserting these values of y(ti+1) and y
′
(ti+1) into the previous equations we  

get 

     

 6(y(ti+1) − y(ti)) 

   

2(2y 

′ 
(ti) + 

y(ti+2)−y(ti ) 

) 

  

 

y 

′′ 
(ti) = − 

    (ti+2−ti )    

     
(ti+1 − ti)

2
  

     
(ti+1 − ti) 

   

                 

               ′   y(ti+2)−y(ti )   

      
12(y(ti+1) − y(ti)) 

 
6(y (ti) + 

   
) 

 

 ′′′       (ti+1−ti )   

y   (ti) = −    +            
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(ti+1 − ti)
3
 

     
(

t
i+1 

 

− ti)
2
 

   

                   
where, as we know, 

y(ti+2) = x(ti+2) 

 

 

We have then the baseline estimate y(t) completely 

specified to be computed in the interval [ti, ti+1]. To get the 

signal without baseline wander we have to subtract from the 

ECG signal samples in that interval the baseline estimate y(t). 

Then, this procedure has to be repeated for the next interval 

[ti+1, ti+2] using the knots xi+1, xi+2 and so on. 

 

The performance of the cubic spline technique is 

critically dependent on the accuracy of the knot 

determination. The PQ interval is relatively easy to delimit in 

ECGs recorded during resting conditions but it may be 

difficult to find in recordings with muscle noise or when 

certain types of arrhythmias are present, such as ventricular 

tachycardia, which distorts severely the ECG signal and 

makes the location process almost impossible. When these 

circumstances take place, the PQ interval is not well-defined 

and, therefore, this technique is inapplicable. 

 

The first step in locating the PQ-interval knot is to detect 

the Q-wave’s maximum downslope. The downslope of the 

ECG signal at any sample with time index t is computed 

using an average negative slope estimate where 

 

downslope(t) = x(t − 3) + x(t − 1) − x(t + 1) − x(t + 3) 

 

Since we are using a 250Hz sampling frequency, the 

time interval between two adjacent samples is 2msec. It is 

defined to detect the maximum downslope in the working 

sample when the computed downslope value exceeds 60% of 

the previous maximum. 

 

Once the PQ-knot is located following the previous 

procedure, the ordinal value for the knot is calculated as the 

average ordinal value of the four data points which are 

nearest to the sample in which the knot has been detected. 

Using these four points to estimate the ordinal value of the 

knot eliminates the 

Effects of the 60Hz noise, according to the data sampling 

frequency of 250Hz: an average over four points acquired at 

250Hz spans 16msec or nearly one cycle of 60Hz noise. As 

shown in [4], from digital filtering theory, we know that 

averages consisting of symmetrically space points spreading 

exactly over one cycle of a sinusoidal signal are not biased by 

that signal component. 

 

At this point, we are able to implement the technique 

proposed for baseline wander removal: we must get the 

locator working to calculate, for each data sample, the down 

slope. If the computed down slope exceeds 60% of the 

previous maximum, we know that the knot is 17 data samples 

(66msec at 250Hz) before the point which triggers the down 

slope. Then, by averaging the four points next to and 

including this sample, we get the ordinal value of the knot, 

which is going to be considered as x(ti). As shown before, we 

need three consecutive beats which its correspondent knots to 

start calculating the cubic spline, so we need to store in 

memory the data samples from the knot at ti to the last 

sample of the third beat and, when it is completed, process 

the first beat. 

 

This takes a lot of memory to operate so, in the next section, 

it is explained the implementation proposed and some 

optimizations to the knot locator. 

6. CONCLUSION 

To measure the results of these filtering techniques, we are 

going to use a wavelet based ECG delineation algorithm by 

Nicholas Boichat [10]. This de-lineation algorithm is based 

on the wavelet transform which was first presented in [18] 

and developed in [19]. The delineation process takes 
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advantage of the fact that the ECG is roughly a periodic 

signal, and each beat is composed of a QRS complex, 

preceded by a P wave, and followed by a T wave. Each of 

these waves has different frequency content -the QRS 

complex is made by relatively high frequencies, while the P 

and T waves are composed of low frequencies. 
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